Radio Measurement and Test Report

For

Shenzhen Wonlex Technology Co., Ltd.

Room 807, Shi Feng Building, 6267 Bao'an Road, Bao'an District, Shenzhen, China.

Test Standards:	EN 300 328 V1.8.1 (2012-06)		
Test Stanuarus.	EN 300 328 VI.O.I (2012-00)		
Product Description:	Kids GPS Watches		
Tested Model:	<u>H1</u>		
Report No.:	<u>GST1512241260W</u>		
Tested Date:	2015-12-25 to 2015-12-29		
Issued Date:	<u>2015-12-29</u>		
Tested By:	Jerry Hu / Engineer Jerry Hu		
Reviewed By:	Tim Sun		
Approved & Authorized By:	Mills Chen/Manager		
Prepared By:			
Global-Standard Testing Service Co. 1 td			
Room 1911-1914, Noble Plaza, Qian Jin 1st Road,			
Bao An district, Shenzhen, Guangdong, China.			
Tel.: +86-755-33863599 Fax.: +86-755-33863718 Website: www.gstslab.com			

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen GST Co., Ltd.

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 Test Standards	
1.3 TEST METHODOLOGY 1.4 EUT Setup and Test Mode	
1.5 Measurement Uncertaint	
2. SUMMARY OF TEST RESULTS	8
3. RF OUTPUT POWER	9
3.1 Test Equipment List and Details	
3.2 Standard Applicable	
3.3 Test Procedure 3.4 Summary of Test Results	
4. DWELL TIME, MINIMUM FREQUENCY OCCUPATION AND HOPPING SEQUENCE	
4.1 Test Equipment List and Details	
4.2 Standard Application	11
4.3 Test procedure	
4.4 SUMMARY OF TEST RESULTS/PLOTS	
5. HOPPING FREQUENCY SEPARATION	
5.1 Test Equipment List and Details	
5.2 STANDARD APPLICATION	
5.4 Summary of Test Results/Plots	
6. ADAPTIVITY (ADAPTIVE FREQUENCY HOPPING)	
6.1 Test Equipment List and Details	
6.2 Standard Application	21
6.3 Test procedure	
6.4 SUMMARY OF TEST RESULTS/PLOTS	
7. OCCUPIED CHANNEL BANDWIDTH	
7.1 Test Equipment List and Details	
7.3 Test procedure	
7.4 Summary of Test Results/Plots	
8. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN	
8.1 Test Equipment List and Details	
8.2 Standard Application	
8.5 Test procedure	
9. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	
9.1 Test Equipment List and Details	
9.2 Standard Applicable	
9.3 Test Procedure	
9.4 Environmental Conditions 9.5 Summary of Test Results/Plots	
10. RECEIVER SPURIOUS EMISSIONS	
10.1 Test Equipment List and Details	
10.2 Standard Applicable	36
10.3 Test Procedure	
10.4 Environmental Conditions 10.5 Summary of Test Results/Plots	
EXHIBIT 1 - EUT PHOTOGRAPHS	

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information	
Applicant:	Shenzhen Wonlex Technology Co., Ltd.
Address of applicant:	Room 807, Shi Feng Building, 6267 Bao'an Road, Bao'an District, Shenzhen, China.
Manufacturer:	Shenzhen Wonlex Technology Co., Ltd.
Address of manufacturer:	2nd Floor, Building D, Funing Hi-tech Industry Park, Xintian Road, Bao'an District, Shenzhen City, China.

General Description of EUT	
Product Name:	Kids GPS Watches
Model No.:	H1
Rated Voltage:	DC 3.7V

Note: The test data is gathered from a production sample, provided by the manufacturer.

Technical Characteristics of	EUT	
Bluetooth Version:	V3.0	
Frequency Range:	2402-2480MHz	
RF Output Power:	3.499dBm (EIRP)	
Type of Modulation:	GFSK, Pi/4 DQPSK, 8DPSK	
Data Rate:	1Mbps, 2Mbps, 3Mbps	
Quantity of Channels	79	
Channel Separation:	1MHz	
Type of Antenna:	PCB	
Antenna Gain:	2.0dBi	

1.2 Test Standards

The following report is prepared on behalf of the GOYA IMPORTACIONES&DISTRIBUCIONES S.L. in accordance

with ETSI EN 300328, Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive.

The objective of the manufacturer is to demonstrate compliance with ETSI EN 300328.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product maybe which result in lowering the emission/immunity should be checked to ensure compliance has been maintained

1.3 Test Methodology

All measurements contained in this report were conducted with ETSI EN 300328, Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive.

1.4 EUT Setup and Test Mode

The equipment under test (EUT) was configured to measure its highest possible emission/immunity level. The test modes were adapted according to the operation manual for use, the EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements, more detailed description as follows:

Test Mode List			
Test Mode	Description	Remark	
TM1	Low Channel	2402MHz	
TM2	Middle Channel	2441MHz	
TM3	High Channel	2480MHz	
TM4	Hopping	2402-2480MHz	

Modulation	Packet	Packet Type	Packet Size
	DH1	4	27
GFSK	DH3	11	183
	DH5	15	339
	2DH1	20	54
Pi/4 DQPSK	2DH3	26	367
	2DH5	30	379
	3DH1	24	83
8DPSK	3DH3	27	552
	3DH5	31	1021

compliance test and record the worst case.

Test Conditions					
	Normal	LTLV	LTHV	HTHV	HTLV
Temperature (°C)	20	-20	-20	55	55
Voltage (V)	3.7	3.3	4.2	4.2	3.3

EUT Cable List and Details				
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite	
USB Cable	0.6	Unshielded	Without Ferrite	
Audio cable	0.6	Unshielded	Without Ferrite	

Special Cable List and Details				
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite	
/	/	/	/	

Auxiliary Equipment List and Details				
Description Manufacturer Model Serial Number				
Computer	Lenovo	20007	EB12648265	

1.5 Measurement Uncertainty

Measurement uncertainty			
Parameter	Conditions	Uncertainty	
RF Output Power	Conducted	±0.42dB	
Occupied Bandwidth		±1×10-7	
Transmitter Spurious Emissions	Radiated	±5.2dB	
Receiver Spurious Emissions	Radiated	±5.2dB	

2. SUMMARY OF TEST RESULTS

4.3.1.1 4.3.1.2	RF Output Power Duty Cycle, Tx-sequence, Tx-gap	Pass N/A
4.3.1.2	Duty Cycle, Tx-sequence, Tx-gap	N/A
4.3.1.3	Dwell time, Minimum Frequency Occupation and Hopping Sequence	Pass
4.3.1.4	Hopping Frequency Separation	Pass
4.3.1.5	Medium Utilisation (MU) Factor	N/A
4.3.1.6	Adaptivity (Adaptive Frequency Hopping)	Pass
4.3.1.7	Occupied Channel Bandwidth	Pass
4.3.1.8	Transmitter Unwanted Emissions in the	Pass
	Out-of-band Domain	
4.3.1.9	Transmitter Unwanted Emissions in the Spurious Domain	Pass
4.3.1.10	Receiver Spurious Emissions	Pass
4.3.1.11	Receiver Blocking	N/A
	4.3.1.5 4.3.1.6 4.3.1.7 4.3.1.8 4.3.1.9 4.3.1.10 4.3.1.11	4.3.1.4Hopping Frequency Separation4.3.1.5Medium Utilisation (MU) Factor4.3.1.6Adaptivity (Adaptive Frequency Hopping)4.3.1.7Occupied Channel Bandwidth4.3.1.8Transmitter Unwanted Emissions in the Out-of-band Domain4.3.1.9Transmitter Unwanted Emissions in the Spurious Domain4.3.1.10Receiver Spurious Emissions

3. RF Output Power

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2015-05-07	2016-05-06
Attenuator	ATTEN	ATS100-4-20	/	2015-05-07	2016-05-06

3.1 Test Equipment List and Details

3.2 Standard Applicable

According to Section 4.3.1.1.2, The maximum RF output power for adaptive Frequency Hopping equipment shall be equal to or less than 20 dBm. The maximum RF output power for non-adaptive Frequency Hopping equipment, shall be declared by the supplier. The maximum RF output power for this equipment shall be equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.

3.3 Test Procedure

According to section 5.3.2.2.1.1 of the standard EN 300328, the test procedure shall be as follows:

1. Using a suitable means, the output of the transmitter shall be connected to the spectrum analyzer, the spectrum analyzer shall be capable of faithfully reproducing the envelope peaks.

2. The average output power of the transmitter shall be determined using the spectrum analyzer. The observed value shall be recorded as "A" (in dBm).

3. The e.i.r.p. shall be calculated from the above measured power output A, the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula: P = A + G;

4. The measurement shall be repeated at the lowest, the middle, and the highest frequency of the stated frequency range. These frequencies shall be recorded. FHSS equipment shall be made to hop continuously to each of these three frequencies separately. These measurements shall be performed at normal and extreme test conditions.

3.4 Summary of Test Results

	Measured Value	Antenna Gain	EIRP	Limit
Test Conditions	dBm	dBi	dBm	dBm
	GFSK Lov	west Channel (2402MHz	z)	
Normal	1.499	2	3.499	20
LTLV	1.491	2	3.491	20
LTHV	1.493	2	3.493	20
HTHV	1.495	2	3.495	20
HTLV	1.497	2	3.497	20
	GFSK Mi	ddle Channel (2441MHz	2)	•
Normal	0.712	2	2.712	20
LTLV	0.705	2	2.705	20
LTHV	0.707	2	2.707	20
HTHV	0.708	2	2.708	20
HTLV	0.711	2	2.711	20
	GFSK Hig	ghest Channel (2480MH	z)	
Normal	0.855	2	2.855	20
LTLV	0.849	2	2.849	20
LTHV	0.851	2	2.851	20
HTHV	0.852	2	2.852	20
HTLV	0.854	2	2.854	20
	8DPSK Lo	west Channel (2402MH	z)	
Normal	0.557	2	2.557	20
LTLV	0.551	2	2.551	20
LTHV	0.552	2	2.552	20
HTHV	0.554	2	2.554	20
HTLV	0.556	2	2.556	20
	8DPSK M	iddle Channel (2441MH	z)	
Normal	-0.388	2	1.612	20
LTLV	-0.395	2	1.605	20
LTHV	-0.393	2	1.607	20
HTHV	-0.391	2	1.609	20
HTLV	-0.389	2	1.611	20
	8DPSK Hij	ghest Channel (2480MH	(z)	•
Normal	-0.062	2	1.938	20
LTLV	-0.070	2	1.930	20
LTHV	-0.068	2	1.932	20
HTHV	-0.065	2	1.935	20
HTLV	-0.064	2	1.936	20

4. Dwell Time, Minimum Frequency Occupation and Hopping Sequence

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2015-05-07	2016-05-06
Attenuator	ATTEN	ATS100-4-20	/	2015-05-07	2016-05-06

4.1 Test Equipment List and Details

4.2 Standard Application

According to section 4.3.1.3.2, Adaptive Frequency Hopping systems shall be capable of operating over a minimum of 70 % of the 2400 to 2483.5MHz band. The maximum accumulated dwell time on any hopping frequency shall be 400 ms within any period of 400 ms multiplied by the minimum number of hopping frequencies (N) that have to be used. The hopping sequence(s) shall contain at least N hopping frequencies at all times, where N is 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater. The Minimum Frequency Occupation Time shall be equal to one dwell time within a period not exceeding four times the product of the dwell time per hop and the number of hopping frequencies in use.

4.3 Test procedure

According to section 5.3.4.2.1, the test procedure shall be as follows:

Step 1:

- The output of the transmitter shall be connected to a spectrum analyzer or equivalent.
- The analyzer shall be set as follows:
- Centre Frequency: Equal to the hopping frequency being investigated
- Frequency Span: 0 Hz
- RBW: ~ 50 % of the Occupied Channel Bandwidth
- VBW: \geq RBW
- Detector Mode: RMS
- Sweep time: Equal to the Dwell Time \times Minimum number of hopping frequencies (N)
- Number of sweep points: 30 000
- Trace mode: Clear / Write
- Trigger: Free Run

Step 2:

• Save the trace data to a file for further analysis by a computing device using an appropriate software application or program.

Step 3:

• Indentify the data points related to the frequency being investigated by applying a threshold.

The data points resulting from transmissions on the hopping frequency being investigated are assumed to have much higher levels compared to data points resulting from transmissions on adjacent hopping frequencies. If a clear determination between these transmissions is not possible, the RBW in step 1 shall be further reduced. In

addition, a channel filter may be used.

• Count the number of data points identified as resulting from transmissions on the frequency being investigated and multiply this number by the time difference between two consecutive data points.

Step 4:

• The result in step 3 is the accumulated Dwell Time which shall comply with the limit provided in clauses 4.3.1.3.2.1 or 4.3.1.3.2.2 and which shall be recorded in the test report.

Step 5:

• Make the following changes on the analyzer and repeat steps 2 and 3.

Sweep time: $4 \times D$ well Time \times Actual number of hopping frequencies in use

The hopping frequencies occupied by the system without having transmissions during the dwell time (blacklisted frequencies) should be taken into account in the actual number of hopping frequencies in use. If this number can not be determined (number of blacklisted frequencies unknown) it shall be assumed that the equipment uses the minimum number of hopping frequencies as defined in clauses 4.3.1.4.2.1 or 4.3.1.4.2.2.

• The result shall be compared to the limit for the Minimum Frequency Occupation Time defined in clauses 4.3.1.3.2.1 or 4.3.1.3.2.2. This value shall be recorded in the test report.

Step 6:

- Make the following changes on the analyzer:
- Start Frequency: 2 400 MHz
- Stop Frequency: 2 483,5 MHz
- RBW: ~ 50 % of the Occupied Channel Bandwidth (single hop)
- VBW: \geq RBW
- Detector Mode: RMS
- Sweep time: Auto
- Trace Mode: Max Hold
- Trigger: Free Run

• When the trace has completed, indentify the number of hopping frequencies used by the hopping sequence. • The result shall be compared to the limit (value N) defined in clauses 4.3.1.3.2.1 or 4.3.1.3.2.2. This value shall be recorded in the test report.

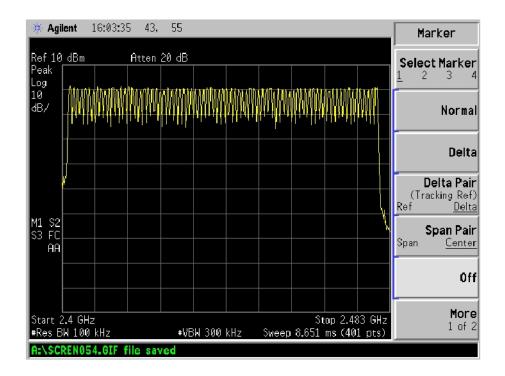
For equipment with blacklisted frequencies, it might not be possible to verify the number of hopping frequencies in use. However they shall comply with the requirement for accumulated Dwell time and Minimum Frequency Occupation Time assuming the minimum number of hopping frequencies defined in clauses 4.3.1.3.2.1 or 4.3.1.3.2.2 are in use.

Step 7:

• For adaptive systems, using the lowest and highest -20 dB points from the total spectrum envelope obtained in step 6, it shall be verified whether the system uses 70 % of the band specified in clause 1. The result shall be recorded in the test report.

4.4 Summary of Test Results/Plots

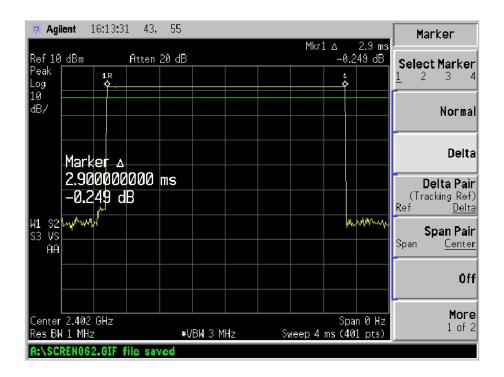
			Maximum	Accumulated Dwell Time							
Modulation	Test Channel	Packet	Time Slot Length	Acc. Dwell Time	Limit						
			ms	ms	ms						
	2402MHz	DH5	2.90	309.3	400						
GFSK	2441MHz	DH5	2.90	309.3	400						
	2480MHz	DH5	2.90	309.3	400						
Test Period: 400	Test Period: 400ms X Minimum number of hopping frequencis (N)										
Accumulated Dy	well Time = Time slot	length (Dwell t	ime) X Number of data	a points within a test po	eriod						


Test data is corrected with the worse case, which the packet length is DH5

			Minimum Fr	requency Occupation	Time
Modulation	Test Channel	Packet	Time Slot Length	Occupation Time	Limit
			ms	ms	ms
	2402MHz	DH1	0.39	499.2	400
GFSK	2441MHz	DH1	0.39	499.2	400
	2480MHz	DH1	0.40	512.0	400
Test Period: 4 X	Dwell time X Minim	um number of h	opping frequencis (N)		
Occupation Tim	e = Time slot length (I	Owell time) X N	Number of data points v	within a test period	

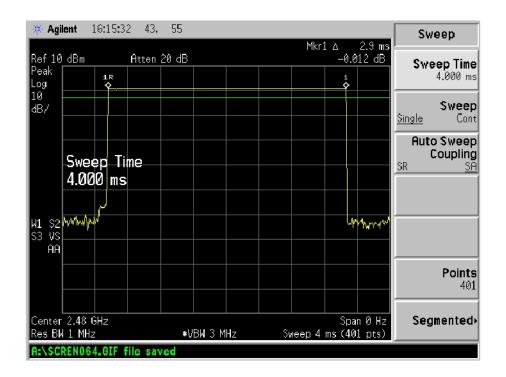
Frequency Band	Number of Hopping Frequencies (N)	Limit	Result
	79	15	Pass
2400-2483.5MHz	-20dB Points Occupied Bandwidth	Limit	Result
	79.290	58.45MHz = 70% X 83.5MHz	Pass

Please refer to the test plots as below:


No.of Channel=79

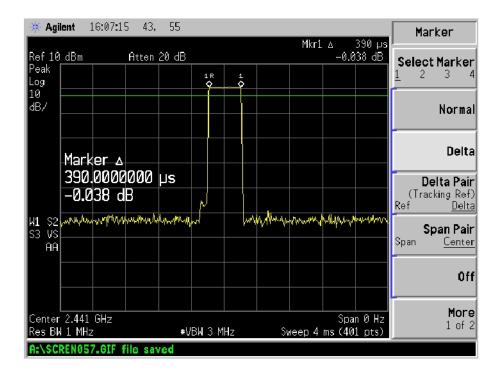
-20dB Bandwidth

∰ Agilent 17:09:06 43, 55	Meas Setup
Ch Freq 2.44175 GHz Occupied Bandwidth	rig Free Avg Number 10 0n Off
RBW 100.0000000 kHz	Avg Mode
Ref 10 dBm Atten 20 dB	Exp Repeat
*Peak Log 10 →	Max Hold
	Occ BW % Pwr 99.00 %
Start 2.4 GHz Stop *Res BW 100 kHz *VBW 300 kHz Sweep 8.651 ms	0BW Span 2,483 GHz (401 pts)
Occupied Bandwidth Occ BW % Pwr	99.00 % -20.00 dB
Transmit Freq Error -690.616 kHz × dB Bandwidth 79.290 MHz	Optimize RefLevel
A:\SCREN047.GIF file saved	


GFSK-DH5-Low

GFSK-DH5-Middle

* Agilent 16:14 : 56 43,	55		Marker
Peak 1R	20 dB	Mkr1 △ 2.9 ms -0.041 dB	Select Marker
Log <u>o</u> 10 dB/		Ŷ	Normal
Marker <u>a</u>			Deita
2.90000000 -0.041 dB	ms		Delta Pair (Tracking Ref) Ref <u>Delta</u>
W1 \$2 <mark>-МММ/</mark> / \$3 V\$ АА			Span Pair Span <u>Center</u>
			Off
Center 2.441 GHz Res BW 1 MHz	#VBW 3 MHz	Span 0 Hz Sweep 4 ms (401 pts)	More 1 of 2


GFSK-DH5-High

GFSK-DH1-Low

🔆 Agil	lent (16:06:3	0 43,	55							Marker
Ref 10	dBm		Åtten	20 dB				Mkr1		390 µs .075 dB	Select Marker
Peak Log 10					1 R						<u>1</u> 234
dB/											Norma
	Mark	er 🛆									Delta
			1000	μs							Delta Pair
		75 d			M						(Tracking Ref) Ref <u>Delta</u>
S3 VS	MUMALN	h.Mr.	whether when the	rumu.	W.	ų	halan yang tang tang tang tang tang tang tang t	harman	il Myr	www.www	Span Pair Span Center
AA											
											Off
	<u> </u>										More
Center Res BW				#\J	BWI 3 M	IHz	Si	veep 4		an 0 Hz 01 pts)	1 of 2

GFSK-DH1-Middle

GFSK-DH1-High

🔆 Agi	lent i	16:08 : 3	943,	55				Mkr1	Δ	400 µs	Marker
Ref 10 Peak Log	dBm		Atten	20 dB	1R					400 ps .85 dB	Select Marker
10 dB/											Norma
	Mark	er ۵									Deita
		0000 85 d		μs	m						Delta Pai (Tracking Ref Ref Delt
W1 \$2 \$3 V\$ AA	Maria	HUMANA	MULHU	Mr. M	hnul	Lu _h	WMWW.	hold and the	populanti	n Jewer and	Span Pai Span <u>Cente</u>
											Of
Center Reg Pl	2.48 0 1 MHz				VBWI3 M	147		weep 4		m 0 Hz	More 1 of 2

5. Hopping Frequency Separation

5.1 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2015-05-07	2016-05-06
Attenuator	ATTEN	ATS100-4-20	/	2015-05-07	2016-05-06

5.2 Standard Application

According to section 4.3.1.4.2, The minimum Hopping Frequency Separation shall be 100 kHz.

5.3 Test procedure

According to the section 5.3.5.2.1, the option 2 test method shall be used.

Step 1:

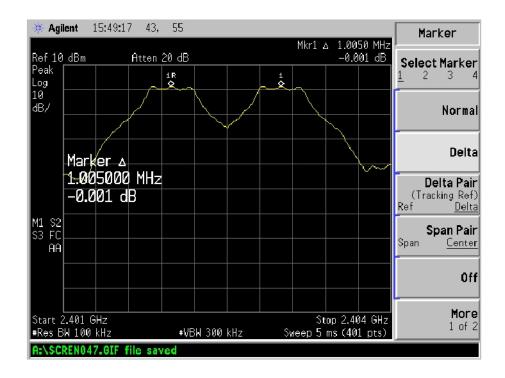
The output of the transmitter shall be connected to a spectrum analyzer or equivalent.

The analyzer shall be set as follows:

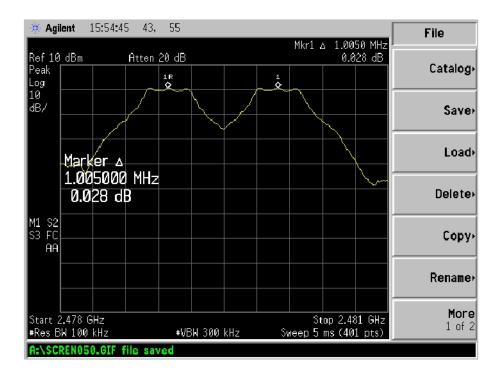
- Centre Frequency: Centre of the two adjacent hopping frequencies
- Frequency Span: Sufficient to see the complete power envelope of both hopping frequencies
- RBW: 1 % of the Span
- VBW: $3 \times RBW$
- Detector Mode: RMS
- Trace Mode: Max Hold
- Sweep Time: Auto

Step 2:

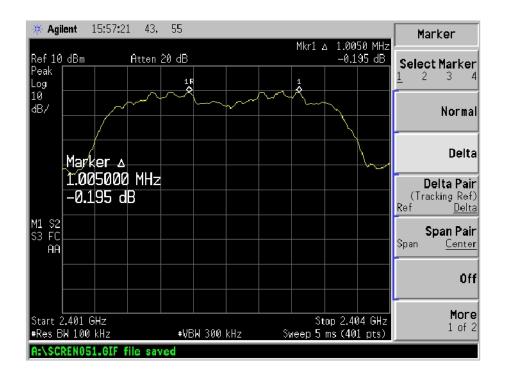
Allow the trace to stabilize.

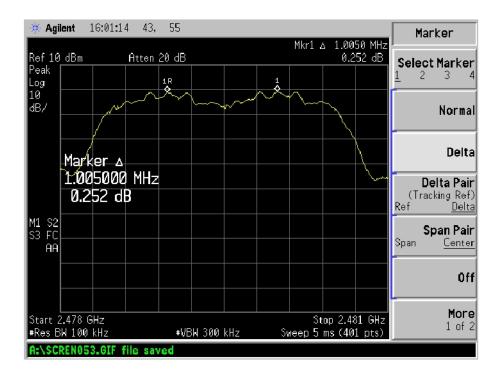

Use the marker-delta function to determine the Hopping Frequency Separation between the peaks of the two adjacent hopping frequencies. This value shall be compared with the limits defined in clause 4.3.1.4.2 and shall be recorded in the test report.

5.4 Summary of Test Results/Plots


Test Mode	Test Channel	Adjacent Channel	Channel Seaparation	Limit
1 est ivioue	MHz	MHz	kHz	kHz
GFSK	2402	2403	1005.0	100
ULDE	2480	2479	1005.0	100
8DPSK	2402	2403	1005.0	100
ODESK	2480	2479	1005.0	100

Please refer to the following test plots:


GFSK-low


GFSK-high

8DPSK-low

8DPSK-high

6. Adaptivity (Adaptive Frequency Hopping)

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2015-05-07	2016-05-06
Attenuator	ATTEN	ATS100-4-20	/	2015-05-07	2016-05-06
Power Divider	Weinschel	1506A	PM204	2015-05-07	2016-05-06
Signal Generator	Rohde & Schwarz	SMR20	100047	2015-05-07	2016-05-06

6.1 Test Equipment List and Details

6.2 Standard Application

According to section 4.3.1.6.2, Adaptive Frequency Hopping equipment using LBT based DAA shall comply with the following minimum set of requirements:

 At the start of every dwell time, before transmission on a hopping frequency, the equipment shall perform a Clear Channel Assessment (CCA) check using energy detect. The CCA observation time shall be not less than 0,2
 % of the Channel Occupancy Time (see step 3) with a minimum of 20 µs. If the equipment finds the hopping frequency to be clear, it may transmit immediately (see step 3).

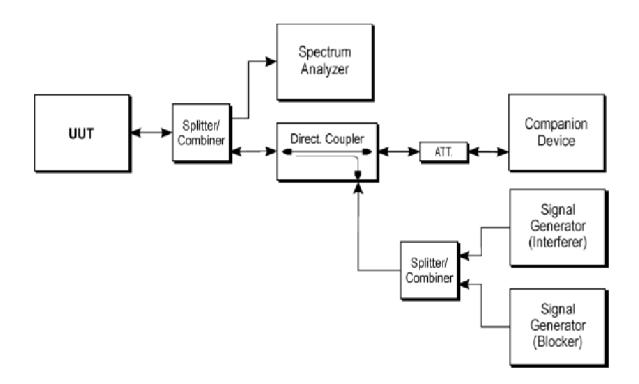
2) If it is determined that a signal is present with a level above the detection threshold defined in step 5. the hopping frequency shall be marked as 'unavailable'. Then the equipment may jump to the next frequency in the hopping scheme even before the end of the dwell time, but in that case the 'unavailable' channel can not be considered as being 'occupied' and shall be disregarded with respect to the requirement to maintain a minimum of 15 hopping frequencies. Alternatively, the equipment can remain on the frequency during the remainder of the dwell time. However, if the equipment remains on the frequency with the intention to transmit, it shall perform an extended CCA check in which the (unavailable) channel is observed for a random duration between the value defined for the CCA observation time in step 1 and 5 % of the Channel Occupancy Time defined in step 3. If the extended CCA check has determined the frequency to be no longer occupied, the hopping frequency becomes available again. The CCA observation time used by the equipment shall be declared by the supplier.

3) The total time during which an equipment has transmissions on a given hopping frequency without re-evaluating the availability of that frequency is defined as the Channel Occupancy Time.

The Channel Occupancy Time for a given hopping frequency, which starts immediately after a successful CCA, shall be less than 60 ms followed by an Idle Period of minimum 5 % of the Channel Occupancy Time with a minimum of 100 μ s. After this, the procedure as in step 1 shall be repeated before having new transmissions on this hopping frequency during the same dwell time.

4) 'Unavailable' channels may be removed from or may remain in the hopping sequence, but in any case:

- there shall be no transmissions on 'unavailable' channels;


- a minimum of 15 hopping frequencies shall always be maintained.

5) The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal or lower than -70 dBm/MHz at the input to the receiver (assuming a 0 dBi receive antenna). For power levels below 20 dBm e.i.r.p., the detection threshold level may be relaxed to TL = -70 dBm/MHz + 20 - Pout e.i.r.p. (Pout in dBm).

If implemented, Short Control Signalling Transmissions shall have a maximum duty cycle of 10 % within an observation period of 50 ms or within an observation period equal to the dwell time, whichever is the shorter.

6.3 Test procedure

According to the section 5.3.7.2.1, the test block diagram shall be used.

All test procedure is carried to the section 5.3.7.2.1

6.4 Summary of Test Results/Plots

Test Item	Limit	Measured Value	Result
Clear Channel Assessment (CCA)	>20us & 0.2%COT	130us	Pass
Extended CCA	/	/	Pass
Channel Occupancy Time (COT)	<60ms	14.56ms	Pass
Idle Period	>100us & 5%COT	1.07ms	Pass
No Transmission on 'Unavailable' Channels	Yes	Yes	Pass
Quantity of Hopping Frequency	15	16	Pass
Detection Thershold Level (TL)	-70dBm/MHz	-80.74dBm/MHz	Pass
Short Control Signalling Transmissions	<10% (Duty Cycle)	/	Pass

7. Occupied Channel Bandwidth

7.1 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2015-05-07	2016-05-06
Attenuator	ATTEN	ATS100-4-20	/	2015-05-07	2016-05-06

7.2 Standard Application

According to section 4.3.1.7.2. The Occupied Channel Bandwidth for each hopping frequency shall fall completely within the band given in clause 1. For non-adaptive Frequency Hopping equipment with e.i.r.p greater than 10 dBm, the Occupied Channel Bandwidth for every occupied hopping frequency shall be equal to or less than the value declared by the supplier. This declared value shall not be greater than 5 MHz.

7.3 Test procedure

According to the section 5.3.5.2.1, the measurement procedure shall be as follows:

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

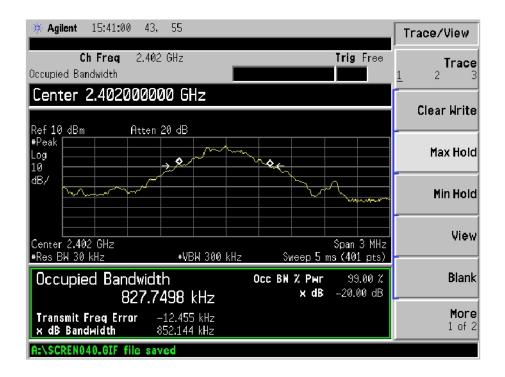
- Centre Frequency: The centre frequency of the channel under test
- Resolution BW: ~ 1 % of the span without going below 1 %
- Video BW: $3 \times RBW$
- Frequency Span: 2 × Occupied Channel Bandwidth
- Detector Mode: RMS
- Trace Mode: Max Hold

Step 2:

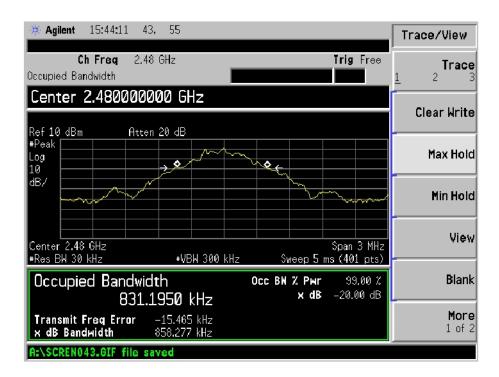
Wait until the trace is completed.

Find the peak value of the trace and place the analyser marker on this peak.

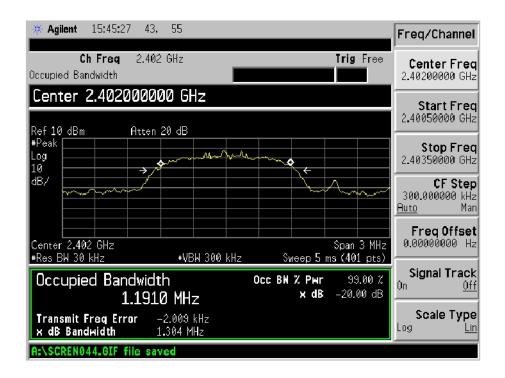
Step 3:

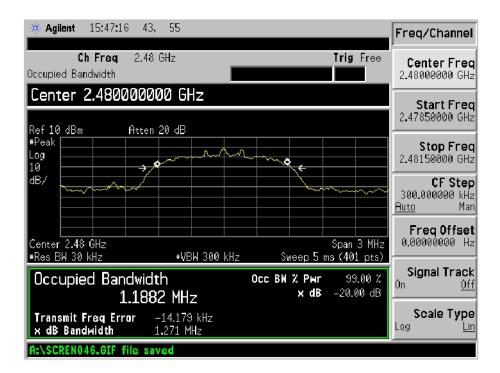

Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.

7.4 Summary of Test Results/Plots


Test Mode	Test Channel	Measured Value	Result	
T est Moue	MHz	kHz	Kesuit	
GFSK	2402	827.7498	Pass	
ULDE	2480	831.1950	Pass	
8DPSK	2402	1191.0	Pass	
ODFSK	2480	1188.2	Pass	

Please refer to the test plots as below:


GFSK-low


GFSK-High

8DPSK-low

8DPSK-high

8. Transmitter Unwanted Emissions in the Out-of-band Domain

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2015-05-07	2016-05-06
Attenuator	ATTEN	ATS100-4-20	/	2015-05-07	2016-05-06

8.1 Test Equipment List and Details

8.2 Standard Application

According to section 4.3.1.8.2. The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure 1.

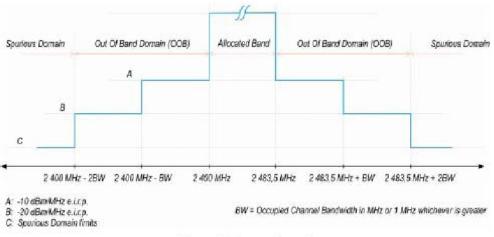


Figure 1: Transmit mask

8.3 Test procedure

According to the section 5.3.9.2.1, the measurement procedure shall be as follows:

The Out-of-band emissions within the different horizontal segments of the mask provided in figures 1 and 3 shall be measured using the steps below. This method assumes the spectrum analyser is equipped with the Time Domain Poweroption.

Step 1:

- Connect the UUT to the spectrum analyser and use the following settings:
- Centre Frequency: 2 484 MHz
- Span: 0 Hz
- Resolution BW: 1 MHz
- Filter mode: Channel filter
- Video BW: 3 MHz
- Detector Mode: RMS
- Trace Mode: Clear / Write Sweep

Mode: Continuous

- Sweep Points: 5 000
- Trigger Mode: Video trigger

- Sweep Time: Suitable to capture one transmission burst

Step 2: (segment 2 483,5 MHz to 2 483,5 MHz + BW)

• Adjust the trigger level to select the transmissions with the highest power level.

• For frequency hopping equipment operating in a normal hopping mode, the different hops will result in signal bursts with different power levels. In this case the burst with the highest power level shall be selected.

• Set a window (start and stop lines) to match with the start and end of the burst and in which the RMS power shall be measured using the Time Domain Power function.

• Select RMS power to be measured within the selected window and note the result which is the RMS power within this 1 MHz segment (2 483,5 MHz to 2 484,5 MHz). Compare this value with the applicable limit provided by the mask.

• Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483,5 MHz to 2 483,5 MHz + BW. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + BW - 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 3: (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW)

• Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW - 0,5 MHz.

Step 4: (segment 2 400 MHz - BW to 2 400 MHz)

• Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz - BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz.

Step 5: (segment 2 400 MHz - 2BW to 2 400 MHz - BW)

• Change the centre frequency of the analyser to 2 399,5 MHz - BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz.

Step 6:

• In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain "G" in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figures 1 or 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.

These measurements have to be performed at normal environmental conditions and shall be repeated at the extremes of the operating temperature range.

Test	Test Segment	I	Max. Emissions Reading (dBm)								
CH.	MHz	Normal	LTLV	LTHV	HTHV	HTLV	dBm				
	Test Mode: GFSK										
	2400-BW to 2400	-35.1	-35.2	-35.4	-35.1	-35.2	-10				
Lowest	2400-2BW to	45.0	45.2	15.5	16.0	45.2	20				
	2400-BW	-45.0	-45.3	-45.5	-46.2	-45.3	-20				
	2483.5 to 2483.5+BW	-35.8	-35.1	-35.6	-35.1	-35.2	-10				
Highest	2483.5+BW to		46.1	15.5	45.2	45 7	20				
	2483.5+2BW	-45.5	-46.1	-45.5	-45.3	-45.7	-20				
Note: BW	please refer to section 7.4	•									

8.4 Summary of Test Results/Plots

9. Transmitter Unwanted Emissions in the Spurious Domain

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	R&S	FSP	836079/035	2015-05-07	2016-05-06
Pre-amplifier	Agilent	8447F	3113A06717	2015-05-07	2016-05-06
Pre-amplifier	Compliance Direction	PAP-0118	24002	2015-05-07	2016-05-06
Trilog Broadband Antenna	SCHWARZBECK	VULB9163	9163-333	2015-04-20	2016-04-19
Horn Antenna	ETS	3117	00086197	2015-04-20	2016-04-19

9.1 Test Equipment List and Details

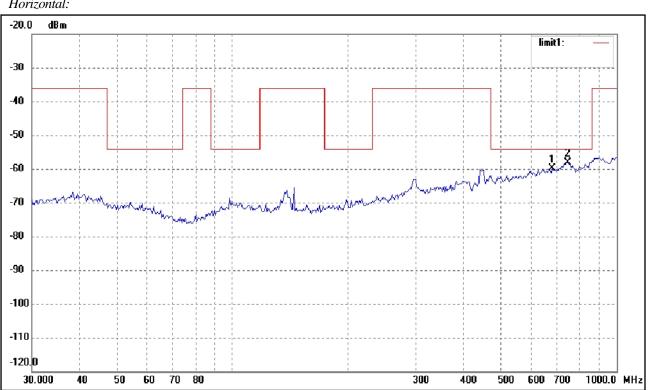
9.2 Standard Applicable

According to section 4.3.1.9.2. The transmitter unwanted emissions in the spurious domain shall not exceed the values given in the following table.

Transmitter limit for spurious emissions

9.3 Test Procedure

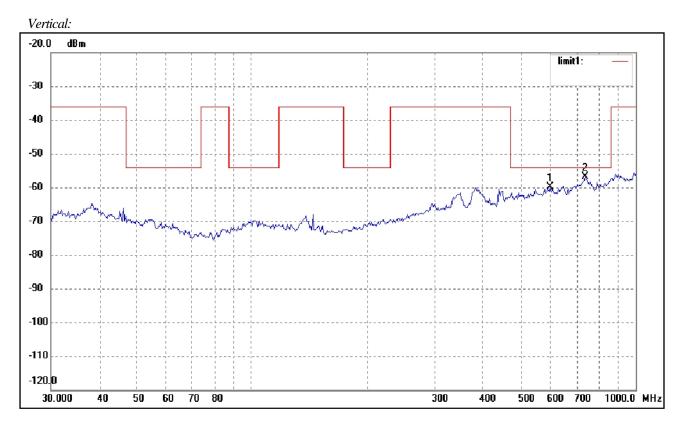
The device under test has an integral antenna and the radiated measurement shall apply to the device, using the method of measurement as described in the EN300328 section 5.3.10.2.


9.4 Environmental Conditions

Temperature:	20° C
Relative Humidity:	54%
ATM Pressure:	1012 mbar

9.5 Summary of Test Results/Plots

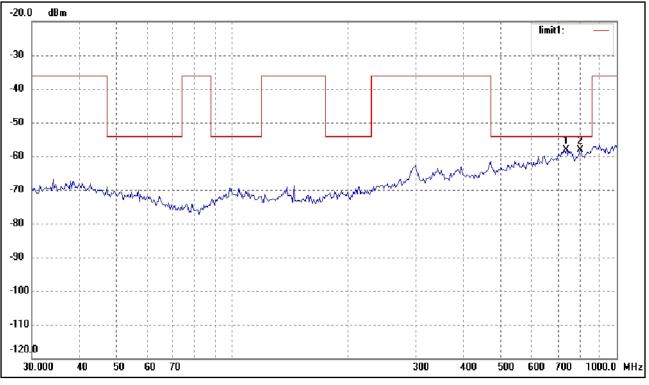
According to the data, the EUT complied with the EN 300328 standards, and had the worst cases:


Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

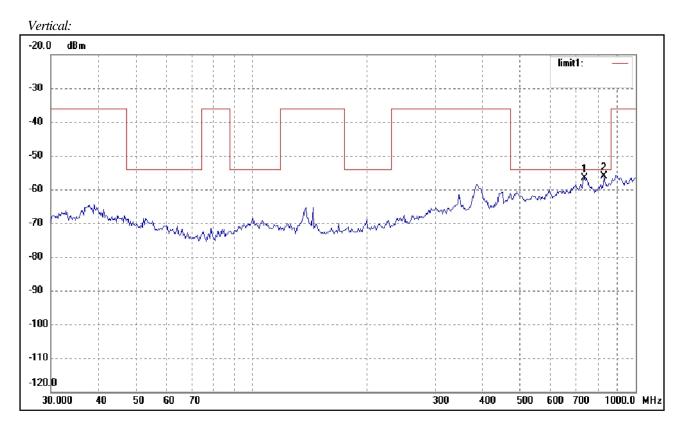
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	
1	679.9600	-87.29	27.35	-59.94	-54.00	-5.94	ERP
2	744.8661	-87.79	29.75	-58.04	-54.00	-4.04	ERP

Spurious Emission from 30MHz to 1GHz Test Mode: Transmitting-Lowest channel

Horizontal:



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	
1	599.3213	-86.37	26.56	-59.81	-54.00	-5.81	ERP
2	739.6605	-86.84	29.87	-56.97	-54.00	-2.97	ERP


Model: H1

Test Mode: Transmitting-Highest channel

Horizontal:

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	
1	739.6605	-88.04	29.87	-58.17	-54.00	-4.17	ERP
2	804.6028	-86.46	28.22	-58.24	-54.00	-4.24	ERP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	
1	734.4913	-86.11	29.48	-56.63	-54.00	-2.63	ERP
2	827.4934	-84.78	28.78	-56.00	-54.00	-2.00	ERP

Model: H1

Frequency	Reading	Correct	Result	Limit	Margin	Polar		
(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	H/V		
Lowest Channel-2402MHz								
4804	-59.31	14.53	-44.78	-30.00	-14.78			
	H7206	-62.55	17.74	-44.81	-30.00			
	-14.81	H4804	-50.68	12.33	-38.35			
	-30.00	-8.35	V7206	-62.90	15.54			
	-47.36	-30.00	-17.36	V				
4960	-59.79	14.77	-45.02	-30.00	-15.02			
	H7440	-61.82	17.85	-43.97	-30.00			
	-13.97	H4960	-59.96	12.57	-47.39			
	-30.00	-17.39	V7440	-62.58	15.65			
	-46.93	-30.00	-16.93	V				

Spurious Emission Above 1GHz

Note: Testing is carried out with frequency rang 30MHz to 12.75GHz, which above 4th Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

10. Receiver Spurious Emissions

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	R&S	FSP	836079/035	2015-05-07	2016-05-06
Pre-amplifier	Agilent	8447F	3113A06717	2015-05-07	2016-05-06
Pre-amplifier	Compliance Direction	PAP-0118	24002	2015-05-07	2016-05-06
Trilog Broadband Antenna	SCHWARZBECK	VULB9163	9163-333	2015-04-20	2016-04-19
Horn Antenna	ETS	3117	00086197	2015-04-20	2016-04-19

10.1 Test Equipment List and Details

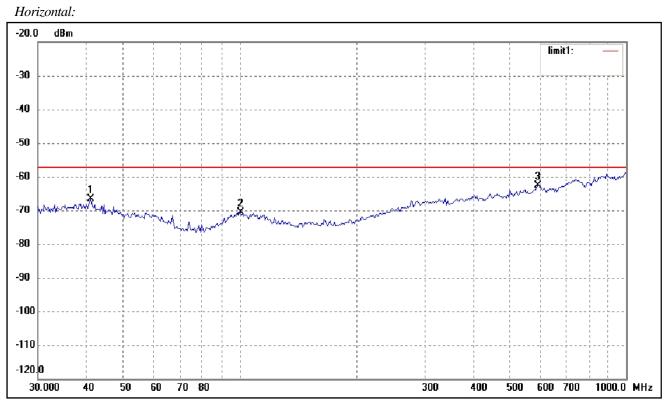
10.2 Standard Applicable

According to section 4.3.1.10.2, The spurious emissions of the receiver shall not exceed the values given in the following table .

Spurious emission limits for receivers

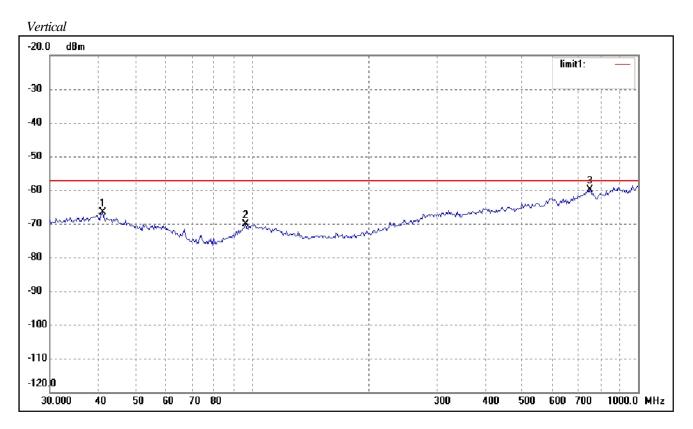
Frequency range	Maximum power e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz)	Measurement bandwidth		
30 MHz to 1 GHz	-57 dBm	100 kHz		
1 GHz to 12,75 GHz	-47 dBm	1 MHz		

10.3 Test Procedure


The device under test has an integral antenna and the radiated measurement shall apply to the device, using the method of measurement as described in the EN300328 section 5.3.11.2.

10.4 Environmental Conditions

Temperature:	23° C
Relative Humidity:	55%
ATM Pressure:	1012 mbar


10.5 Summary of Test Results/Plots

According to the data, the EUT complied with the EN 300328 standards, and had the worst case:

Test Mode: Receiving

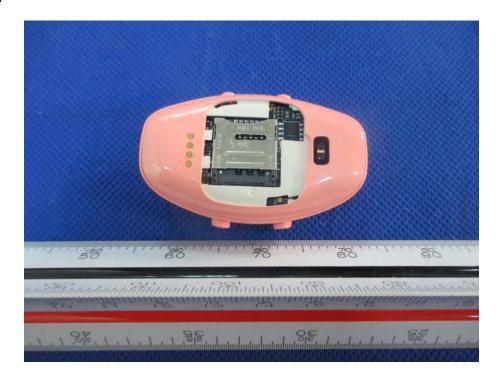
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	
1	41.1320	-86.95	20.33	-66.62	-57.00	-9.62	ERP
2	100.2286	-88.44	17.92	-70.52	-57.00	-13.52	ERP
3	590.9737	-87.24	24.68	-62.56	-57.00	-5.56	ERP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	
1	41.1320	-86.95	20.33	-66.62	-57.00	-9.62	ERP
2	96.0986	-86.98	16.94	-70.04	-57.00	-13.04	ERP
3	750.1083	-86.67	26.87	-59.80	-57.00	-2.80	ERP

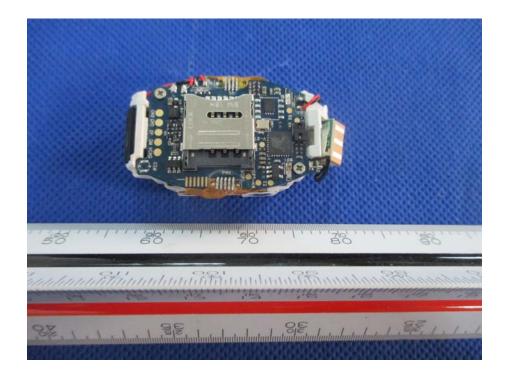
Note: Testing is carried out with frequency rang 30MHz to 12.75GHz, which above 1GHz are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

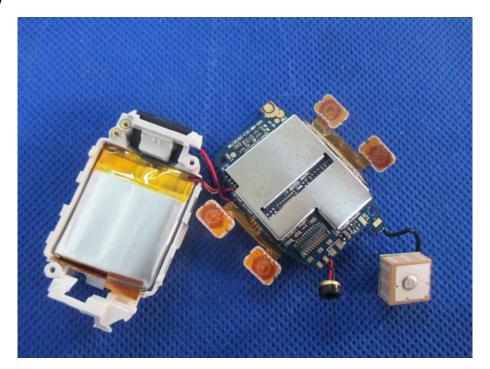
EXHIBIT 1 - EUT PHOTOGRAPHS

EUT View 1



EUT View 2


EUT View 4


EUT View 5

EUT View 6

EUT View 7

EUT View 8

***** END OF REPORT *****